Меню
Бесплатно
Главная  /  Социальное развитие  /  25 солнечный цикл. Ученые предсказывают долгую паузу солнечной активности

25 солнечный цикл. Ученые предсказывают долгую паузу солнечной активности

Графики на этой странице отображают динамику активности Солнца в период текущего солнечного цикла. Таблицы обновляются каждый месяц SWPC с последними прогнозами ISES. Наблюдаемые значения представляют собой временные значения, которые заменяются конечными данными, когда они доступны. Все графики на этой странице могут быть экспортированы в виде файлов JPG, PNG, PDF или SVG. Каждый набор данных может быть включен или выключен, щелкнув соответствующее описание под каждым графом.

Количество солнечных вспышек C, M и X-класса в год

На этом графике показано количество солнечных вспышек C, M и X-класса, которые произошли в течение заданного вами года. Это дает представление о количестве солнечных вспышек по отношению к числу солнечных пятен. Таким образом, это еще один способ увидеть как эволюционирует солнечный цикл с течением времени. Эти данные поступают из SWPC NOAA и обновляются ежедневно.

На приведенном ниже графике показано количество солнечных вспышек C, M и X-класса, которые произошли в течение последнего месяца вместе с количеством солнечных пятен каждого дня. Это дает представление о солнечной активности в течение последнего месяца. Эти данные поступают из SWPC NOAA и обновляются ежедневно.

Количество безупречных дней в году

В периоды низкой солнечной активности на поверхности Солнца могут полностью отсутствовать солнечные пятна, такое состояние Солнца считается безупречным. Это часто бывает во время солнечного минимума. На графике показано количество дней в течение определенного года, когда на поверхности Солнца отсутствовали пятна.

Кол-во дней в году когда наблюдались геомагнитные бури

На этом графике показано количество дней в году когда наблюдалась геомагнитные бури и насколько сильными были эти бури. Это дает представление о том, в какие годы было много геомагнитных бурь и динамика их интенсивности.

Целых одиннадцать дней на Солнце, вопреки известной поговорке, нет ни одного пятна. Это значит, что наша звезда вступает в период минимальной активности и в течение ближайшего года магнитные бури и рентгеновские вспышки станут редкостью. О том, что происходит с Солнцем, когда его активность вновь возрастет и чем объясняются эти спады и подъемы, мы попросили рассказать сотрудника Лаборатории рентгеновской астрономии Солнца ФИАН, доктора физико-математических наук Сергея Богачева.

Сегодня на Солнце пятен нет

Среднемесячное число Вольфа на Солнце - индекс, которым ученые измеряют число солнечных пятен - за первые три месяца 2018 года опустилось ниже значения 10. До этого в 2017 году оно держалось на уровне 10–40, в еще годом ранее в отдельные месяцы достигало 60. Одновременно на Солнце почти перестали происходить солнечные вспышки, а вместе с ними к нулю стремится и число магнитных бурь на Земле. Все это свидетельствует о том, что наша звезда уверенно движется в сторону очередного минимума солнечной активности - состояния, в котором она оказывается приблизительно каждые 11 лет.

Само понятие солнечного цикла (а под ним понимается как раз периодическая смена максимумов и минимумов солнечной активности) является фундаментальным для физики Солнца. Вот уже более 260 лет, с 1749 года, ученые в ежедневном режиме следят за Солнцем и аккуратно записывают положение солнечных пятен и, конечно же, их число. И, соответственно, вот уже более 260 лет на этих кривых наблюдаются периодические изменения, чем-то похожие на биение пульса.

Каждому такому «удару солнечного сердца» присваивают номер, и всего с момента начала наблюдений таких ударов наблюдалось 24. Соответственно, именно столько солнечных циклов пока знакомо человечеству. Сколько же их было всего, существуют ли они все время, пока существует Солнце, или появляются эпизодически, меняется ли их амплитуда и продолжительность и какую длительность, например, имел солнечный цикл во времена динозавров - на все эти вопросы ответа нет, равно как на вопрос, характерен ли цикл активности для всех звезд солнечного типа или существует лишь на некоторых из них, и если существует, то будут ли две звезды с одинаковым радиусом и массой иметь одинаковый период цикла. Мы не знаем и этого.

Таким образоом, солнечный цикл относится к наиболее интересным солнечным тайнам, и хотя мы достаточно много знаем о его природе, все же многие фундаментальные его основы для нас все еще являются загадкой.


График солнечной активности, измеренной по числу пятен на Солнце, за всю историю наблюдений

Солнечный цикл тесно связан с наличием у Солнца так называемого тороидального магнитного поля. В отличие от земного магнитного поля, имеющего вид магнита c двумя полюсами - север и юг, линии которого направлены сверху вниз, на Солнце есть особый вид поля, который отсутствует (или неразличим) на Земле - это два магнитных кольца с горизонтальными линиями, которые опоясывают Солнце. Одно располагается в северном полушарии Солнца, а второе в южном, примерно симметрично, то есть на таком же расстоянии от экватора.

Основные линии тороидального поля лежат под поверхностью Солнца, но часть линий может всплывать на поверхность. Именно в этих местах, где магнитные трубки тороидального поля пробивают солнечную поверхность, и возникают солнечные пятна. Таким образом, число пятен в некотором смысле отражает мощность (или более точно - поток) тороидального магнитного поля на Солнце. Чем сильнее это поле, тем крупнее пятна, тем больше их число.

Соответственно, из того, что раз в 11 лет пятна на Солнце исчезают, можно сделать предположение, что раз в 11 лет на Солнце исчезает тороидальное поле. Да, так оно и есть. И собственно это - периодическое появление и исчезновение солнечного тороидального поля с периодом 11 лет - и является причиной солнечного цикла. Пятна же и их число лишь являются косвенными признаками этого процесса.

Почему же солнечный цикл измеряется по числу пятен, а не по силе магнитного поля? Ну, хотя бы потому, что в 1749 году магнитное поле на Солнце наблюдать, конечно, не могли. Магнитное поле Солнца было обнаружено лишь в начале XX века американским астрономом Джорджем Хейлом, изобретателем спектрогелиографа - прибора, способного с высокой точностью измерять профили линий солнечного спектра, и в том числе наблюдать их расщепление под действием эффекта Зеемана. Собственно, это было не только первое измерение поля Солнца, а вообще первое обнаружение магнитного поля у внеземного объекта. Так что астрономам XVIII-XIX веков только и оставалось, что наблюдать солнечные пятна, и у них не было никакой возможности даже догадаться об их связи с магнитным полем.

Но почему тогда пятна продолжают считать в наши дни, когда развита многоволновая астрономия, в том числе наблюдения из космоса, которые, конечно, дают много более точную информацию о солнечном цикле, чем простой подсчет числа Вольфа? Причина очень проста. Какой бы современный параметр цикла вы ни измерили и как бы точен он ни был, эту цифру нельзя будет сравнить с данными XVIII, XIX, да и большей частью XX века. Вы просто не поймете, насколько сильным или слабым является ваш цикл.


Последний цикл солнечной активности

SILSO data/image, Royal Observatory of Belgium, Brussels

Единственный способ такого сравнения - это посчитать число пятен, причем точно тем же методом и по точно той же формуле, что и 200 лет назад. Хотя возможно, что лет через 500, когда будут накоплены значительные ряды новых данных о числе вспышек, о потоках радиоизлучения, ряд чисел пятен окончательно утратит актуальность и сохранится лишь как часть истории астрономии. Пока же это не так.

Знание природы солнечного цикла позволяет делать некоторые предсказания о числе и расположении пятен на Солнце и даже точно определить момент, когда начинается новый солнечный цикл. Последнее утверждение может показаться сомнительным, так как в ситуации, когда число пятен снизилось почти до нуля, кажется невозможным уверенно утверждать, что пятно, которое было вчера, относилось к предыдущему циклу, а пятно сегодня - уже часть нового цикла. Тем не менее такой способ есть, и он связан именно со знанием природы цикла.

Так как солнечные пятна возникают в тех местах, где поверхность Солнца пробивают линии тороидального магнитного поля, то каждому пятну можно присвоить некую магнитную полярность - просто по направлению магнитного поля. Пятно может быть «северным» или «южным». Более того, так как трубка магнитного поля должна пробивать поверхность Солнца в двух местах, то и пятна должны преимущественно образовываться парами. При этом пятно, образовавшееся в месте, где линии тороидального поля выходят из поверхности, будет иметь северную полярность, а парное ему пятно, образовавшееся там, где линии уходят обратно - южную.

Поскольку тороидальное поле опоясывает Солнце как кольцо и направлено горизонтально, то и пары пятен ориентированы на диске Солнца преимущественно горизонтально, то есть располагаются на одной широте, но одно впереди другого. А так как направление линий поля во всех пятнах будет одинаковое (они ведь образованы одним магнитным кольцом), то и полярности всех пятен будут ориентированы одинаково. Например, первое, ведущее, пятно во всех парах будет северным, а второе, отстающее, южным.


Структура магнитных полей в районе солнечных пятен

Такой шаблон будет поддерживаться все время, пока существует данное кольцо поля, то есть все 11 лет. В другом же полушарии Солнца, где располагается симметричное второе кольцо поля, полярности также будут сохраняться все 11 лет, но иметь обратную направленность - первые пятна будут наоборот южными, а вторые - северными.

Что же происходит, когда меняется солнечный цикл? А происходит достаточно удивительная вещь, называемая переполюсовкой. Северный и южный магнитные полюса Солнца меняются местами, а вместе с ними меняется и направление тороидального магнитного поля. Сначала это поле проходит через ноль, это-то и называется солнечным минимумом, а затем начинает восстанавливаться, но уже с другим направлением. Если в предыдущем цикле передние пятна в каком-то полушарии Солнца имели северную полярность, то в новом цикле они уже будут иметь южную. Это и позволяет отличить друг от друга пятна соседних циклов и уверенно зафиксировать момент, когда начинается новый цикл.

Если же возвратиться к событиям на Солнце прямо сейчас, то мы наблюдаем процесс умирания тороидального поля 24-го солнечного цикла. Остатки этого поля все еще существуют под поверхностью и даже иногда всплывают наверх (в эти дни мы видим отдельные слабые пятна), но в целом это последние следы умирающего «солнечного лета», как отдельные последние теплые дни в ноябре. Несомненно, что уже в ближайшие месяцы это поле окончательно умрет и солнечный цикл достигнет очередного минимума.

МОСКВА, 15 июн - РИА Новости. Солнечная активность в следующие 20-30 лет может резко снизиться, что способно привести к повторению так называемого "маундеровского минимума" - самого длительного падения солнечной активности с 1645 по 1715 год, с которым связывают "малый ледниковый период" в Европе.

Три научные группы, представившие результаты своих исследований солнечной короны, его поверхности и внутренней структуры на конференции астрономов-гелиофизиков в университете штата Нью-Мексико в городе Лас Крусес, пришли к выводу, что следующий, 25-й, цикл солнечной активности может быть значительно ослаблен, либо вообще будет пропущен.

"Это очень необычно и неожиданно, но тот факт, что три принципиально разных подхода к исследованию Солнца указывают в одну сторону, является мощным свидетельством того, что цикл солнечной активности может впасть в спячку", - говорит Фрэнк Хилл (Frank Hill) из Национальной солнечной обсерватории в штате Нью-Мексико.

Последние 400 лет наблюдений за Солнцем свидетельствуют о том, что наше светило испытывает чередующиеся периоды роста и снижения активности, сменяющие друг друга с периодом примерно в 11 лет.

В период роста активности на Солнце значительно чаще происходят вспышки, появляются "корональные дыры" - области с повышенной скоростью солнечного ветра - и выбросы плазмы, которые становятся причиной магнитных бурь на Земле. Главным показателем уровня активности служит количество солнечных пятен - сравнительно темных и холодных областей, которые образуются там, где на "поверхность" звезды выходят "трубки" очень мощного магнитного поля. Пятна появляются чаще при максимумах активности, и значительно реже - при "спокойном" Солнце.

Новый цикл сопровождается сменой полярности солнечного магнитного поля.

Предыдущий 23-й солнечный цикл (их нумерацию начала в 1750-м году Цюрихская обсерватория) отличался рекордно глубоким минимумом. Число дней без пятен стало самым большим с начала 19-го века. При этом подъем активности в новом 24-м цикле был очень "пологим", рост солнечной активности, по оценкам ученых, отставал от "графика" примерно на три года.

Солнце впадает в спячку?

Ученые, изучавшие динамику изменений магнитного поля Солнца, обнаружили, что признаки, которые обычно указывают на начало зарождения пятен нового цикла, отсутствуют или слабо выражены. По мнению исследователей, следующий цикл солнечной активности либо "задержится" до 2022 года, или же его просто не будет.

Согласно современным представлениям, Солнце изменяет интенсивность испускаемого излучения преимущественно под воздействием флуктуаций магнитного поля. Оно меняется из-за того, что плазма, которая составляет материю светила, вращается вокруг ядра звезды с разной скоростью на разных широтах - на экваторе быстрее, у полюсов - значительно медленнее (до 30%).

Это порождает временные магнитные возмущения, которые препятствуют нормальному обмену плазмой между внешними и внутренними слоями светила. В результате чего такие участки значительно охлаждаются, что и объясняет снижение интенсивности излучения и потемнение видимой поверхности Солнца в этих областях.

Астрономы зафиксировали несколько признаков, которые позволяют им предсказать заметное уменьшение солнечной активности в следующем цикле. Группа под руководством Хилла установила, что вращательные колебания потоков плазмы, предшествующие образованию магнитных возмущений, не появились вовремя.

Вторая группа ученых из Национальной обсерватории Китт-Пик обнаружила, что средняя сила магнитного поля уменьшалась на 50 гауссов в год за два предыдущих цикла солнечной активности (1 гаусс - единица измерения магнитного поля, которая соответствует мощности магнитного поля Земли).

Как утверждают Мэтт Пенн (Matt Penn) и Вильям Ливингстон (William Livingston), если данная тенденция продолжится, и сила поля упадет ниже 1500 гауссов - минимального порога образования пятен - то пятна не будут появляться в силу того, что магнитные возмущения не смогут препятствовать обмену материей между горячими внутренними слоями и более холодными внешними.

Третья группа астрономов установила, что быстрый рост силы магнитного поля у полюсов Солнца, который предшествует смене одного цикла солнечной активности другим, в этот раз может оказаться недостаточно сильным для вытеснения старого цикла новым. Это приведет, как пишет Ричард Альтрок (Richard Altrock) из Национальной солнечной обсерватории, к серьезной теоретической проблеме, так как текущие представления не предусматривают существования двух очагов магнитной активности на Солнце.

"Если наши выводы верны, то следующий солнечный максимум будет последним, который мы увидим на протяжении следующих нескольких десятилетий. Этот феномен затронет все - и исследования космического пространства, и климат на Земле", - пишет Гилл.

Не стоит торопиться

Российский гелиофизик Сергей Богачев из Физического института имени Лебедева считает, что американские коллеги несколько поторопились с выводами. По его словам, нынешний цикл действительно развивается не так, как ожидалось, однако говорить о том, что он будет аномальным пока рано.

"Говорить о том, что происходит что то аномальное - пока нельзя. Можно ожидать, что цикл будет необычным, но пока ничего не говорит о том, что он будет аномальным", - сказал ученый в беседе с РИА Новости.

По его словам, невооруженным глазом видно, как активность с 2009 по 2011 год возросла, и отклонения от ожидаемых значений укладываются в средние.

"Рост есть - и это очевидно. Он достаточно ярко выражен, и спорить можно только о скорости этого роста. Мое впечатление, что она замедленна примерно раза в два по сравнению с нормальной скоростью роста цикла, но в целом это укладывается в многообразие циклов, которые наблюдались за прошедшие 260 лет", - сказал Богачев.

В свою очередь доктор Эва Роббрехт (Eva Robbrecht) из департамента физики Солнца бельгийской Королевской обсерватории сказала РИА Новости, что сейчас "не существует достаточно сильных свидетельств, что Солнце впадает в спячку".

"Мы не настолько хорошо понимаем механизм работы "солнечного динамо", чтобы делать такие заявления. Точно так же мы можем считать, что в прошлые циклы Солнце пережило "великий максимум" и теперь возвращается к среднему уровню (активности)", - сказала собеседница агентства.

Она в частности отмечает, что приводимые Альтроком данные о появлении пятен нового цикла на более высоких широтах, чем должны быть, объясняются всего лишь оптическим эффектом.

Кроме того, считает эксперт, выводы Пенна и Ливингстона также недостаточно основательны, поскольку они базируются на данных о солнечном цикле лишь за 13 лет, что слишком мало для таких далеко идущих выводов.

"Это может быть эффект прошлого слабого цикла", - говорит она.

После изобретения телескопа астрономы Галилео Галилей, Томас Хэрриот, Кристоф Шейнер и Ян Фабрициус независимо обнаружили, что на диске Солнца появляются пятна. Однако потребовалось почти 250 лет, чтобы понять, что поведение Солнца подчиняется определенному расписанию с периодом в 11 лет. Одиннадцатилетнюю периодичность солнечной активности случайно открыл в XIX веке немецкий аптекарь Генрих Швабе. Он увлекался астрономией и с помощью любительского телескопа стремился обнаружить гипотетическую малую планету внутри орбиты Меркурия. Планету он так и не нашёл, но благодаря систематическим наблюдениям открыл циклы солнечной активности. Сейчас такие наблюдения за солнечными пятнами проводятся два раза в день на протяжении всего года обсерваториями по всему миру и прогнозирование 11-летнего солнечного цикла имеет первостепенное значение во многих областях человеческой деятельности в космосе и на Земле.

Космическая погода

Выдающийся русский ученый Александр Чижевский в начале XX века предложил идею о космической погоде и заложил основу для возникновения новой отрасли науки, исследующей солнечно-земные взаимосвязи. Он говорил, что Земля постоянно находится в объятиях Солнца. И настроение Солнца передается Земле через эти объятия. Из солнечной короны, атмосферы Солнца, постоянно истекает солнечный ветер, поток заряженных частиц, который обдувает Землю и другие планеты солнечной системы. Солнечный ветер переносит в себе энергию Солнца, растягивает и уносит с собой солнечное магнитное поле в космическое пространство. В итоге вся солнечная система заполняется солнечным ветром и солнечным магнитным полем. А поскольку Солнце вращается, то магнитное поле в межпланетном пространстве приобретает форму волнистых спиральных складок наподобие многослойной юбки балерины. А Земля и все планеты солнечной системы обитают в этих складках.

Solar and Heliospheric Observatory Изображение иллюстрирует солнечную активность за 11 лет, от минимума в 1996 году, ло максимума в 2001 и до возвращения к минимуму в 2006

Прогнозы активных событий на Солнце людям так или иначе приходиться учитывать в своих повседневных планах. Перевод спутника в безопасный режим во время активных событий на Солнце может предотвратить нарушение работы солнечных батарей и ключевых систем спутников. Космическая погода является угрозой космонавтам, находящимся в открытом космосе, подверженным значительному облучению, превышающему порог лучевой болезни. Активные события на Солнце могут приводить к помехам в распространении радиосигналов. Космическая погода оказывает влияние на дозы радиации, которые получают пилоты и пассажиры, особенно при трансполярных перелетах. Своевременное прогнозирование космической погоды имеет большое значение для авиации и защиты целого ряда наземных технических систем, для полета человека в космос, запусков научных и коммерческих спутников.

Солнечный цикл начинается с зарождения пятен на полюсах, с развитием цикла появляется все больше пятен, которые движутся с полюсов к экватору Солнца. В минимуме солнечной активности, когда пятна на Солнце практически отсутствуют, магнитное поле Солнца выглядит как обычный магнит, с круговыми магнитными линиями и двумя полюсами. Поскольку экватор Солнца вращается быстрее, чем полюса, то во время вращения Солнца магнитное поле как бы запутывается, как клубок ниток. По мере приближения к максимуму солнечной активности привычное магнитное поле с двумя полюсами превращается во множество локальных магнитных полей на поверхности Солнца, в атмосфере Солнца выдвигаются перепутанные петли, которые содержат в себе солнечное вещество, и они могут выброситься в виде вспышек и корональных выбросов масс и достичь Земли. Следовательно, в максимуме солнечной активности количество активных событий на Солнце существенно увеличивается. С другой стороны, на пике своей активности магнитное поле Солнца настолько сильное, что выметает галактические космические лучи из нашей солнечной системы, которые представляют большую опасность для технологических систем в космосе. Каждые 11 лет полюса Солнца меняются местами, южный оказывается на месте северного, и наоборот. Это сложный процесс, который до конца не изучен, и модель солнечного динамо является одной из наиболее сложных нелинейных задач математической физики.

Прогноз солнечных циклов

Каждому солнечному циклу для удобства присваивается номер, например, сейчас мы приближаемся к минимуму 24 цикла солнечной активности. Задача ученых спрогнозировать силу следующего 25 цикла солнечной активности как можно раньше. Ученые из Сколтеха, Грацского университета имени Карла и Франца и Королевской обсерватории Бельгии разработали метод, который позволяет выполнить прогноз силы следующего 11-лентнего цикла очень рано, а именно на этапе максимума текущего солнечного цикла. Это означает, что текущий солнечный цикл на этапе своего пика, когда происходит переполюсовка магнитного поля Солнца, уже несет в себе знание о силе будущего 11-летнего цикла. Данные открытия могут помочь в изучении механизма действия солнечного динамо. Анализ показал, что краткосрочные вариации солнечной активности в фазе падения цикла связаны с силой следующего цикла. Внезапные скачки активности в падающей фазе и замедление скорости падения относительного числа солнечных пятен свидетельствует о наличии активности, которая проявляется в большей амплитуде следующего цикла по сравнению с текущим циклом. В данном исследовании предлагается новый и робастный метод для количественной оценки краткосрочных вариаций солнечной активности уже на этапе максимума текущего солнечного цикла, в начале фазы падения, и формируется значимый индикатор для прогнозирования силы следующего цикла.

Согласно прогнозу, будущая солнечная активность будет низкой и сила следующего 25-го цикла солнечной активности будет еще меньше, чем сила текущего цикла 24-го цикла солнечной активности. Результаты исследования опубликованы в журнале The Astrophysical Journal.

«Космическая погода — это наука будущего, то, что нас всех объединяет, делает нашу жизнь лучше, позволяет заботится о нашей планете. Это следующий шаг в освоении космоса. И какие бы не бушевали бури, мы желаем вам хорошей космической погоды!» — говорит первый автор исследования, профессор Сколтеха, Татьяна Подладчикова.

Материал предоставлен пресс-службой Сколковского института науки и технологий (