Меню
Бесплатно
Главная  /  Пупок  /  Отношение эквивалентности и фактор-множество. Отношения эквивалентности

Отношение эквивалентности и фактор-множество. Отношения эквивалентности

Пусть G={p 0 =e, p 1 , …, p r } есть некоторая группа подстановок, определенная на множестве X = {1, 2, …, n} с единицей e=p 0 тождественной подстановкой. Определим отношение x~y, положив x~y равносильно, что существует p принадлежащее G(p(x)=y). Введенное отношение есть отношение эквивалентности, то есть оно удовлетворяет трем аксиомам:

1) x~x;
2) x~y→y~x;
3) x~y&y~z→x~z;

Пусть А – произвольное множество.
Определение : Бинарное отношение δ=A*A есть отношение эквивалентности (обозначается a ~ b), если они удовлетворяет следующим аксиомам:
∀ a, b, c ∈ A
1) a ~ a – рефлексивность;
2) a ~ b ⇒ b ~ a – коммутативность;
3) a ~ b & b ~ c → a ~ c — транзитивность

обозначается a ~ b, σ(a,b), (a,b) ∈ σ, a σ b

Определение : Разбиение множества А есть семейство попарно не пресекающихся подмножеств из А, в объединении (в сумме) дающих все А.
А= ∪А i , А i ∩А j = ∅, ∀i ≠ j.

Подмножества А i называются смежными классами разбиения.

Теорема : каждое отношение эквивалентности, определенное на А, соответствует некоторому разбиению множества А. Всякое разбиение множества А соответствует некоторому отношению эквивалентности на множестве А.

Коротко: между классами всех определенных на множестве А отношений эквивалентностей и классом всех разбиений множества А существует взаимнооднозначное соответствие.

Доказательство : пусть σ — есть отношение эквивалентности на множестве А. Пусть а ∈ А.

Построим множество: К a ={x ∈ A,: x~a } – всех элементов, эквивалентных а. Множество (обозначение) называется классом эквивалентности относительно эквивалентности σ. Заметим, что если b принадлежит K a , то b~a. Покажем, что a~b⇔K a =K b . В самом деле, пусть a~b. Возьмем произвольный элемент c принадлежит K a . Тогда c~a, a~b, c~b, c принадлежит K b и потому K b принадлежит K a . То, что K a принадлежит K b , показывается аналогично. Следовательно, K b =K a .
Пусть теперь K b =K a . Тогда a принадлежит K a = K b , a принадлежит K b , a~b. Что и требовалось показать.

Если 2 класса K a и K b имеют общий элемент с, то K a = K b . В самом деле, если с принадлежит K a и K b , то b~c, c~a, b~a => K a = K b .

Поэтому различные классы эквивалентности либо не пересекаются, либо пересекаются и тогда совпадают. Всякий элемент с из А принадлежит только одному классу эквивалентности К с. Поэтому система непересекающихся классов эквивалентности в пересечении дает все множество А. И потому эта система есть разбиение множества А на классы эквивалентности.

Обратное: Пусть А = сумма по или A i – есть разбиение А. Введем на А отношение a~b, как a~b ⇔ a,b принадлежат одному и тому же классу разбиения. Это отношение удовлетворяет следующим аксиомам:

1) a ~ a (лежат в одном классе);
2) a ~ b → b ~ a;
3) a ~ b & b ~ c → a ~ c, т.е. введенное отношение ~ есть отношение эквивалентности.

Замечание :
1) разбиение множества А на одноэлементные подмножества и разбиение А, состоящие только из множества А, называется тривиальными (несобственным) разбиением.

2) Разбиение А на одноэлементные подмножества соответствует отношению эквивалентности которое есть равенство.

3) Разбиение А, состоящие из одного класса А, соответствует отношению эквивалентности, содержащему A x A.

4) a σ b → [a] σ = [b] σ — всякое отношение эквивалентности определенное на некотором множестве разбивает это множество на попарно не пересекающиеся классы называемые классами эквивалентности.

Определение : Совокупность классов эквивалентности множества А называется фактор-множеством A/σ множества А по эквивалентности σ.

Определение : Отображение p:A→A/σ, при котором p(A)=[a] σ , называется каноническим (естественным) отображением.

Всякое отношение эквивалентности, определенное на некотором множестве, разбивает это множество на попарно не пересекающиеся классы, называемые классами эквивалентности.

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.

Пусть (X, £) – частично упорядоченное множество, A Í X – подмножество. Отношение на А, состоящее из пар (a, b) элементов a, b Î A, для которых a £ b, будет отношением порядка на А. Это отношение обозначают тем же символом: £. Таким образом, (A, £) – частично упорядоченное множество. Если оно является линейно упорядоченным, то будем говорить, что А – цепь в (X, £).

Принцип максимальности

Некоторые математические утверждения невозможно доказать без аксиомы выбора. Про эти утверждения говорят, что они зависят от аксиомы выбора или справедливы в теории ZFC , на практике вместо аксиомы выбора для доказательства используют обычно либо аксиому Цермело, либо лемму Куратовского-Цорна, либо любое другое утверждение, равносильное аксиоме выбора.

Лемма Куратовского-Цорна . Если каждая цепь в частично упорядоченном множестве (X, £) ограничена сверху, то в X есть по крайней мере один максимальный элемент.

Эта лемма равносильна аксиоме выбора, и поэтому её можно принять в качестве аксиомы.

Теорема. Для любого частично упорядоченного множества (X, £) существует отношение, содержащее отношение £ и превращающее X в линейно упорядоченное множество.

Доказательство . Множество всех отношений порядка, содержащих отношение £, упорядочено отношением включения Í. Поскольку объединение цепи отношений порядка будет отношением порядка, то по лемме Куратовского-Цорна существует максимальное отношение R, такое, что x £ y влечет x R y. Докажем, что R – отношение, линейно упорядочивающее X. Предположим противное: пусть существуют a, b Î X такие, что ни (a, b), ни (b, a) не принадлежат R. Рассмотрим отношение:

R¢ = R È {(x, y): x R a и b R y}.

Оно получается добавлением пары (a, b) к R и пар (x, y), которые должны быть добавлены к R¢ из условия, что R¢ – отношение порядка. Легко видеть, что R¢ рефлексивно, антисимметрично и транзитивно. Получаем R Ì R¢, противоречащее максимальности R, следовательно, R – искомое отношение линейного порядка.

Линейно упорядоченное множество X называется вполне упорядоченным, если всякое его непустое подмножество A Í X содержит наименьший элемент a Î A. Лемма Куратовского-Цорна и аксиома выбора эквивалентны также следующему утверждению:

Аксиома Цермело . Для каждого множества существует отношение порядка, превращающее его во вполне упорядоченное множество.

Например, множество w натуральных чисел является вполне упорядоченным. Принцип индуктивности обобщается следующим образом:

Трансфинитная индукция . Если (X, £) – вполне упорядоченное множество и F(x) – свойство его элементов, верное для наименьшего элемента x 0 Î X и такое, что из истинности F(y) для всех y < z следует истинность F(z), то F(x) верно для всех x Î X.

Здесь y < z означает, что у £ z, но y ¹ z. Действительно, в противном случае среди x Î X, не обладающих свойством F(x), можно выбрать наименьший элемент x 1 , и выполнение F(y) для всех y < x 1 приводит к выполнению F(x 1), противоречащему предположению.

Понятие мощности

Пусть f: X à Y и g: Y à Z – отображения множеств. Поскольку f и g – отношения, то определена их композиция g ° f(x) = g(f(x)). Если h: Z à T – отображение множеств, то h ° (g ° f) = (h ° g) ° f. Отношения Id X и Id Y – функции, стало быть, определены композиции Id Y ° f = f ° Id x = f. При X = Y определим f 2 = f ° f, f 3 = f 2 ° f, …, f n+1 = f n ° f.

Отображение f: X àY называется инъекцей , если для любых элементов x 1 ¹ x 2 множества X справедливо f(x 1) ¹ f(x 2). Отображение f называется сюръекцией , если для каждого y ÎY существует такой x Î X, что f(x) = y. Если f является и сюръекцией, и инъекцией, то f называется биекцией . Легко видеть, что f – биекция тогда и только тогда, когда обратное отношение f -1 Í Y ´ X является функцией.

Будем говорить, что справедливо равенство |X| = |Y|, если существует биекция между X и Y. Положим |X| £ |Y|, если существует инъекция f: X à Y.

Теорема Кантора-Шредера-Бернштейна . Если |X| £ |Y| и |Y| £ |X| , то |X| = |Y|.

Доказательство . По условию, существуют инъекции f: X à Y и g: Y à X. Пусть A = g¢¢Y = Img – образ множества Y относительно отображения g. Тогда

(X \ A) Ç (gf)¢¢(X \ A) = Æ,

(gf)¢¢(X \ A) Ç (gf) 2 ¢¢(X \ A) = Æ, …,

(gf) n ¢¢(X \ A) Ç (gf) n+1 ¢¢(X \ A) = Æ, …

Рассмотрим отображение j: X à A, заданное как j(x) = gf(x), при

x Î (X \ A) È (gf)¢¢(X \ A) È (gf) 2 ¢¢(X \ A) È …, и j(x) = x в остальных случаях. Легко видеть, что j – биекция. Искомая биекция между X и Y будет равна g -1 ° j.

Антиномия Кантора

Положим |X| < |Y|, если |X| £ |Y| и не существует биекции между X и Y.

Теорема Кантора . Для любого множества X справедливо |X| < |P(X)|, где P(X) – множество всех подмножеств множества X.

Источник задания: Задание 10_20. ЕГЭ 2018 Обществознание. Решение

Задание 20. Прочитайте приведённый ниже текст, в котором пропущен ряд слов (словосочетаний). Выберите из предлагаемого списка слова (словосочетания), которые необходимо вставить на место пропусков.

«Качество жизни зависит от множества факторов, начиная от места проживания человека и заканчивая общей социально-экономической и (А) ситуацией, а также состоянием политических дел в стране. На качество жизни в той или иной степени могут влиять демографическая ситуация, жилищно-бытовые и производственные условия, объём и качество _____(Б) и т. д. В зависимости от степени удовлетворения потребностей в экономике принято выделять разные уровни жизни населения: достаток - пользование (В), обеспечивающими всестороннее развитие человека; нормальный уровень _____(Г) по научно обоснованным нормам, обеспечивающий человеку восстановление его физических и интеллектуальных сил; бедность - потребление благ на уровне сохранения работоспособности как низшей границы воспроизводства _____(Д); нищета - потребление минимально допустимого по биологическим критериям набора благ и услуг, которые позволяют лишь поддерживать жизнеспособность человека.

Население, адаптируясь к рыночным условиям, использует различные дополнительные источники получения доходов, включая поступления из личных подсобных хозяйств, прибыль от _____(Е)».

Слова (словосочетания) в списке даны в именительном падеже. Каждое слово (словосочетание) может быть использовано только один раз.

Выбирайте последовательно одно слово (словосочетание) за другим, мысленно заполняя каждый пропуск. Обратите внимание на то, что слов (словосочетаний) в списке больше, чем Вам потребуется для заполнения пропусков.

Список терминов:

1) капитал

2) экологическая

3) рациональное потребление

4) потребительские товары

5) средства производства

7) рабочая сила

8) предпринимательская деятельность

9) социальная мобильность

Решение.

Вставим термины в текст.

«Качество жизни зависит от множества факторов, начиная от места проживания человека и заканчивая общей социально-экономической и экологической (2) (А) ситуацией, а также состоянием политических дел в стране. На качество жизни в той или иной степени могут влиять демографическая ситуация, жилищно-бытовые и производственные условия, объём и качество потребительских товаров (4) (Б) и т. д. В зависимости от степени удовлетворения потребностей в экономике принято выделять разные уровни жизни населения: достаток - пользование благами (6) (В), обеспечивающими всестороннее развитие человека; нормальный уровень рационального потребления (3) (Г) по научно обоснованным нормам, обеспечивающий человеку восстановление его физических и интеллектуальных сил; бедность - потребление благ на уровне сохранения работоспособности как низшей границы воспроизводства рабочей силы (7) (Д); нищета - потребление минимально допустимого по биологическим критериям набора благ и услуг, которые позволяют лишь поддерживать жизнеспособность человека.

∼ {\displaystyle \sim } . Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X {\displaystyle X} в множество классов эквивалентности X / ∼ {\displaystyle X/\!\sim } называется факторотображением . Благодаря свойствам отношения эквивалентности, разбиение на множества единственно. Это означает, что классы, содержащие ∀ x , y ∈ X {\displaystyle \forall x,\;y\in X} , либо не пересекаются, либо совпадают полностью. Для любого элемента x ∈ X {\displaystyle x\in X} однозначно определён некоторый класс из X / ∼ {\displaystyle X/\!\sim } , иными словами существует сюръективное отображение из X {\displaystyle X} в X / ∼ {\displaystyle X/\!\sim } . Класс, содержащий x {\displaystyle x} , иногда обозначают [ x ] {\displaystyle [x]} .

Если множетво снабжено структурой, то часто отображение X → X / ∼ {\displaystyle X\to X/\!\sim } можно использовать чтобы снабдить фактормножество X / ∼ {\displaystyle X/\!\sim } той же структурой, например топологией. В этом случае множество X / ∼ {\displaystyle X/\!\sim } с индуцированной структурой называется факторпространством .

Энциклопедичный YouTube

    1 / 4

    ✪ 3. Классы эквивалентности

    ✪ Теория множеств Лекция 3 Часть 1

    ✪ Теория множеств Лекция 3 Часть 2

    ✪ Теория множеств Лекция 3 Часть 3

    Субтитры

Факторпространство по подпространству

Часто отношение эквивалентности вводят следующим образом. Пусть X {\displaystyle X} - линейное пространство , а L {\displaystyle L} - некоторое линейное подпространство. Тогда два элемента x , y ∈ X {\displaystyle x,\;y\in X} таких, что x − y ∈ L {\displaystyle x-y\in L} , называются эквивалентными . Это обозначается x ∼ L y {\displaystyle x\,{\overset {L}{\sim }}\,y} . Получаемое в результате факторизации пространство называют факторпространством по подпространству L {\displaystyle L} . Если X {\displaystyle X} разлагается в прямую сумму X = L ⊕ M {\displaystyle X=L\oplus M} , то существует изоморфизм из M {\displaystyle M} в X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} . Если X {\displaystyle X} - конечномерное пространство , то факторпространство X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} также является конечномерным и dim ⁡ X / ∼ L = dim ⁡ X − dim ⁡ L {\displaystyle \dim X/\,{\overset {L}{\sim }}=\dim X-\dim L} .

Примеры

. Можно рассмотреть фактормножество X / ∼ {\displaystyle X/\!\sim } . Функция f {\displaystyle f} задаёт естественное взаимноднозначное соответствие между X / ∼ {\displaystyle X/\!\sim } и Y {\displaystyle Y} .

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

(то есть которое обладает следующими свойствами: каждый элемент множества эквивалентен сам себе; если x эквивалентно y , то y эквивалентно x ; если x эквивалентно y , а y эквивалентно z , то x эквивалентно z ).

Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X в множество классов эквивалентности называется факторотображением .

Примеры

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

Примеры

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Фактормножество" в других словарях:

    Логический принцип, лежащий в основе определений через абстракцию (См. Определение через абстракцию): любое Отношение типа равенства, определённое на некотором исходном множестве элементов, разбивает (делит, классифицирует) исходное… …

    Форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений в их противоречии и развитии; мысль или система мыслей, обобщающая, выделяющая предметы некоторого класса по определённым общим и в совокупности… … Большая советская энциклопедия

    Когомологии Галуа группы. Если М абелева группа и группа Галуа расширения, действующая на М, то когомологии Галуа есть группы когомологии определяемые комплексом состоит из всех отображений, a d кограничный оператор (см. Когомологии групп).… … Математическая энциклопедия

    Конструкция, к рая впервые появилась в теории множеств, а затем стала широко использоваться в алгебре, топологии и других областях математики. Важный частный случай И. п. это И. п. направленного семейства однотипных математических структур. Пусть … Математическая энциклопедия

    Точки хотносительно группы G, действующей на множестве X(слева), множество Множество является подгруппой в G и наз. стабилизатором, или стационарной подгруппой точки хотносительно G. Отображение индуцирует биекцию между G/Gx и орбитой G(x). О.… … Математическая энциклопедия

    В этой статье слишком короткое вступление. Пожалуйста, дополните вводную секцию, кратко раскрывающую тему статьи и обобщающую её содержимое … Википедия

    Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики. Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции),… … Википедия

    Пусть на множестве задано отношение эквивалентности. Тогда множество всех классов эквивалентности называется фактор множеством и обозначается. Разбиение множества на классы эквивалентных элементов называется его факторизацией. Отображение из в… … Википедия

    Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия

    В различных разделах математики ядром отображения называется некоторое множество kerf, в некотором смысле характеризующее отличие f от инъективного отображения. Конкретное определение может различаться, однако для инъективного отображения f… … Википедия